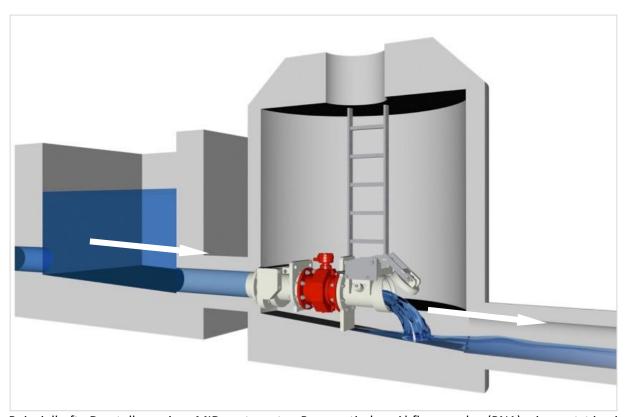


Technische Informationen

Pneumatische Abflussregelung

Pneumatisch angetriebene Regelorgane zur präzisen Mengenbegrenzung von Abwasser und Regenwasser

Inhaltsverzeichnis


Inhaltsverzeichnis	2
Einsatzbereiche	3
Erfolgsmerkmale	4
Technischer Aufbau	5
Anwendungsbeispiele	8
Funktion	10
Eigenkontrolle	12
Beispiel Montageablauf	13
Vorteile	14
Technische Daten	
Theoretische Baulängen	
Steuerung	20
Schnittstellen	20
Bedienung	21
Kontaktdaten	24

Einsatzbereiche

Die pneumatische Abflussregelung ist mit zwei Durchflussmesssystemen von Stebatec kombinierbar, eines für vollgefüllte und eines für teilgefüllte Rohre. Verwendung finden sie vor allem:

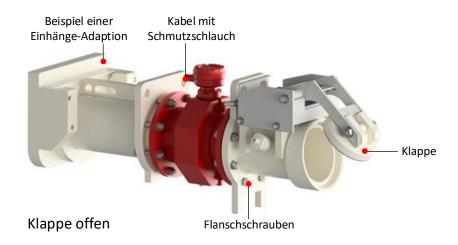
- Ablaufseitig von Regenbecken und Mischwasserentlastungen zur Begrenzung des Zuflusses zur Kläranlage und zur Aktivierung von Stauvolumen.
- Ablaufseitig von Strassenabwasser-Behandlungsanlagen (SABA) zur Begrenzung der Durchlaufmenge.
- Zur Zulaufbegrenzung vor Kläranlagen.

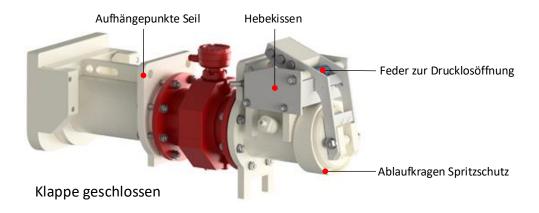
Beispielhafte Darstellung einer MID-gesteuerten Pneumatischen Abflussregelug (PNA), eingesetzt in einem Regenbecken im Hauptschluss.

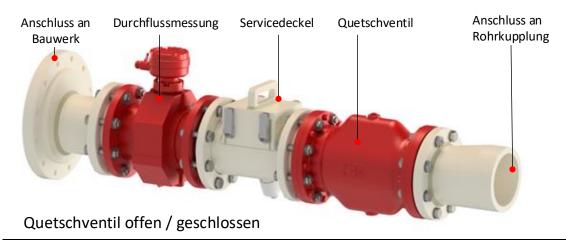
Erfolgsmerkmale

Pneumatische Abflussregelungen sind wichtige Bestandteile bei der dynamischen Regelung, dem Betrieb und der Überwachung von Kanalnetzen.

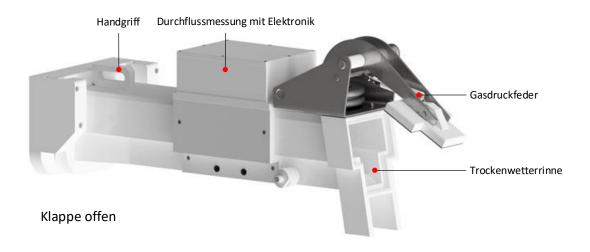
- Der Drosselwert ist im gesamten Abflussspektrum variabel parametrierbar/verstellbar
- Die Regelung ist fernsteuerbar und kompatibel mit sämtlichen handelsüblichen Prozessleitsystemen
- Ermöglicht die dynamische Steuerung/Regelung von Kanalnetzen
- Misst den Durchfluss mit maximal 1% Abweichung vom Messwert, regelt hochgenau mit k\u00fcrzesten
 Nachstellzeiten und ohne Laufzeitbegrenzung
- Kombinierte Durchflussmess- und Regelanlage inkl. Beruhigungsstrecken mit kleinstem Platzbedarf
- Detektiert Verschmutzungen und leitet diese gezielt ab (Spülstossfunktion, Geschiebeableitung)
- Drosselt bei Netzausfall mit einem Notfallprogramm weiter
- Ermöglicht Teilfüllbetrieb und verhindert Ablagerungen
- Ist wartungsfreundlich und kann zur Reinigung ohne Werkzeug demontiert/geöffnet werden
- Funktioniert mit einem standardisierten, ausgereiften Steuerprogramm
- Die Geräte können trocken oder nass aufgestellt werden

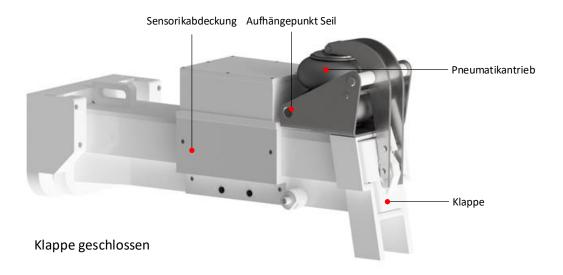


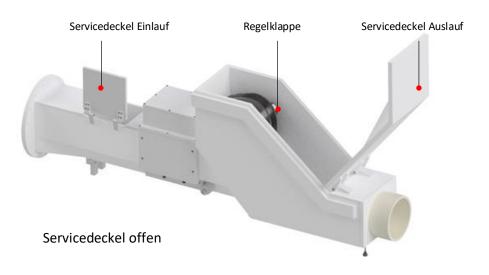

Pneumatische Abflussregelung

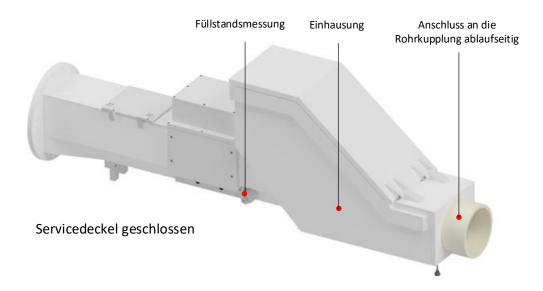

Technischer Aufbau

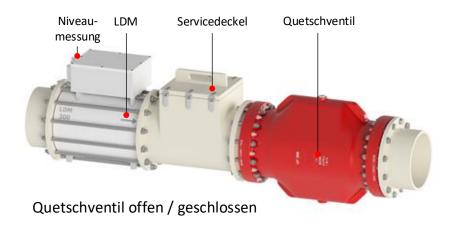
Regelklappe kombiniert mit vollgefüllter MID-Durchflussmessung




MID-gesteuerte Abflussregelung mit Quetschventil


Nass aufgestellte Abflussregelung mit teilgefüllter Durchflussmessung





Trocken aufgestellte Abflussregelung mit teilgefüllter Durchflussmessung

LDM-gesteuerte pneumatische Abflussregelung mit Quetschventil

Anwendungsbeispiele

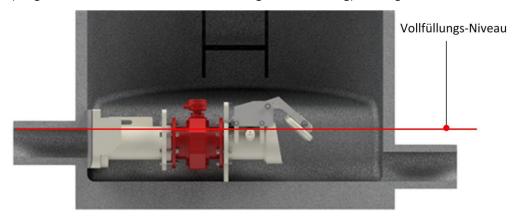
Nass aufgestellte Abflussregelung mit teilgefüllter Durchflussmessung

Der nass aufgestellte teilgefüllte pneumatische Abflussregler mit normaler Baulänge.

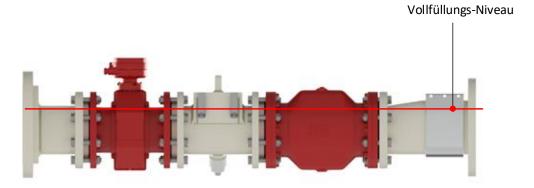
Beispielhafte Kanalausbildung im Zulauf des Abflussreglers, in dem die Kanalform bereits einige Meter vor der Drosselstrecke auf rechteckig transformiert wird.

Verkürzte Bauform, in der die Beruhigungsstrecke in die zulaufseitige Wand und in den Raum davor verbaut wurde.

Trocken aufgestellte Abflussegelung mit teilgefüllter Durchflussmessung


Funktion

Die pneumatisch angetriebene Klappe sorgt für die Vollfüllung des MID (falls vorhanden), drosselt die Durchflussmenge auf einen einstellbaren maximalen Wert und erwirkt mittels Spülstoss eine Selbstreinigung der Durchflussmessung.


Beim Aufblasen des Pneumatikantriebs wird die Klappe über eine Hebelachse geschlossen. Im drucklosen Zustand bleibt die Klappe ohne Gegendruck geöffnet.

Vollfüllregelung

Bei Trockenwetter und Unterschreitung der Drosselmenge schaltet die Anlage auf automatische Vollfüllregelung (falls Funktion aktiviert ist). Gesteuert durch das Signal der integrierten Füllstandsmessung öffnet sich die Regelklappe nur so weit, dass der Messaufnehmer immer vollgefüllt ist. Der Messaufnehmer (magnetisch-induktive Durchflussmessung für Vollfüllung) erbringt dabei höchste Messgenauigkeit.

Beide Ausführungen in Kombination mit vollgefüllten MID's halten sich automatisch vollgefüllt – die Abbildung oben mit Regelklappe und unten entsprechend mit Quetschventil.

Mengenregelung

Sobald die parametrierte maximale Abflussmenge/Drosselmenge erreicht wird, schaltet die Anlage automatisch auf Mengenregelung um. Dabei wird die Regelung nach dem Signal der Durchflussmessung gesteuert und begrenzt die Abflussmenge entsprechend.

Notbetrieb bei Netzausfall und Gerätestörung

Die pneumatische Abflussregelung verfügt über verschiedene Reaktionsvarianten im Notfall, die zusammen mit dem entsprechenden Verkaufsingenieur definiert werden.

Variante Notdrossel

Im stromlosen Zustand ist die Klappe bei normaler Ausführung geöffnet. Dies kann in manchen Anwendungen nicht geeignet sein, da bei einem Stromausfall der Drosselwert nicht eingehalten werden könnte.

Die Notdrossel schaltet bei Stromausfall das Druckkissen am Regler mit dem Druckbehälter am Kompressor über einen Druckminderer kurz. Die Einstellung des Druckminderers definiert den Kissendruck für Notfälle. Die Einstellung erfolgt situativ – wir unterstützen Sie hierbei gerne.

Spülstoss zur Ablagerungsprävention

Um Ablagerungen entgegenzuwirken, die der Grundeinstau der Vollfüllungregelung teils nach sich ziehen kann oder auch um "Dynamik" in das Kanalnetz zu bringen, ist die Anlage mit einer Selbstreinigungsfunktion (Spülstoss) ausgestattet. Dabei wird die Klappe in einstellbaren Abständen geschlossen und durch anschliessendes schnelles Öffnen der Klappe eine Schwallspülung erzeugt.

Teilfüllmodus

Bei Ausführung mit einer teilfüllfähigen Durchflussmessung wird der Teilfüllmodus dauerhaft aktiviert. Die Anlage schaltet bei Erreichen der Maximalmenge automatisch auf Mengenregelung um.

In der Ausführung mit einer magnetisch-induktiven Durchflussmessung (MID) hält die Regelklappe die Anlage automatisch vollgefüllt. Dies führt zu einem Grundeinstau in der vorangehenden Leitung. Der Teilfüllmodus ermöglicht nun, dass die Regelklappe bei Trockenwetter geöffnet bleibt und erst bei ansteigendem Wasserspiegel in den Vollfüllund Mengenregelungs-Modus wechselt. Ohne Grundeinstau schwindet das Risiko von allfälligen Ablagerungen im Kanalsystem. Falls die MID später wieder verwendet werden soll, kann der Teilfüllmodus mit einem Klick in der Bedienoberfläche der Steuerung einfach unterdrückt werden.

Eigenkontrolle

Die pneumatische Abflussregelung arbeitet nach drei Referenzsignalen, dies sind Durchfluss (Durchflussmessung), Wasserhöhe und pneumatischer Gegendruck im Druckkissen.

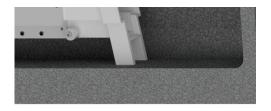
Die Verhältnisse zwischen den drei Referenzen müssen sich immer in einem definierten Grenzbereich befinden; andernfalls verändert die Anlage ihren Zustand:

- Ist der Wasserstand im Verhältnis zum Durchfluss und Gegendruck im Kissen zu hoch, werden Ablagerungen im Bereich der Regelklappe vermutet = Klappe öffnet kurz.
- Nimmt der Gegendruck im Kissen zu, der Durchfluss und Wasserstand bleiben aber konstant, kann die Klappe durch Geschiebe verklemmt sein = Klappe öffnet kurz.

Beispiel Montageablauf

Der hier am Beispiel einer teilgefüllten pneumatischen Abflussregelung gezeigte Montageablauf gilt sinngemäss auch für die vollgefüllte pneumatische Abflussregelung.

Pneumatische Regelung an Seilen durch den Einstieg in den Schacht hinablassen.



Gerät über der vorgängig montierten Einhäng-Adaption waagrecht platzieren und absenken, bis die obere Kante der Keilplatte mit der Einhäng-Adaption bündig ist.

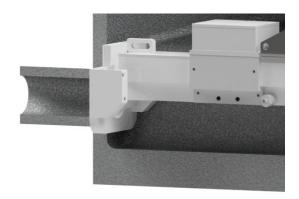
Die Stützfüsse der Regelung sind bei der Erstmontage an das Gerinne so angepasst worden, dass das Gerät in der Endposition waagrecht liegt.

Vorteile

Zuverlässigkeit

Der unkomplizierte Systemaufbau und die Verwendung geeigneter Werkstoffe sorgen für eine sichere und langjährige Funktion.

Regelgenauigkeit


Die Regelklappe ist unmittelbar nach der Durchflussmessung angeordnet, dadurch reagiert sie schnell auf Abflussveränderungen und kann zudem den programmierten Regelwert mit kleinster Abweichung einhalten.

Für den Vergleich mit einer Plattenschieber-Abflussregelung kann die Faustformel 1 zu 10 verwendet werden: Während ein Plattenschieber stufenweise 100 Einzelpositionen anfahren kann, schafft die pneumatische Abflussregelung dank der stufenlosen Druckregelung vergleichbar mindestens 1000 Einzelpositionen – was die Grundlage der hohen Regelgenauigkeit darstellt.

Wartungsfreundlichkeit

Die Geräte sind so konstruiert, dass die Strömung in ihnen laminar verläuft, sodass sich Feststoffe und Geschiebe gezielt ableiten lassen. Dies hat eine Verlängerung der Wartungsintervalle zur Folge.

Die Einhäng-Adaption (bei nass aufgestellten Systemen) und die Wartungsöffnung (bei geschlossenen Systemen) vereinfacht die Wartung wesentlich. Die schraubenlose Konstruktion sitzt genau und erübrigt damit ein Ausrichten des Geräts nach dem Einbau.

Kostenreduktion

Bei vielen Anwendungen kann die pneumatische Abflussregelung ohne oder im Vergleich mit andern Systemen mit weniger baulichen Anpassungen eingesetzt werden, was die Gesamtkosten reduziert.

Technische Daten

Messbereich: 0,2 – 5000 l/s (abhängig von der System-Nennweite)

Regelbereich: ab 0,2 l/s

Nennweiten: 200 mm – 1500 mm

Zulassung Durchflussmessungen: ATEX Zone I

Zulassung Regelklappen und

Quetschventil: ATEX Zone I

Zulassung Einhängeadapter, Verrohrung

und Wartungsöffnungen: ATEX Zone I

Werkstoffe: Polypropylen; Metall V2A oder nach Anforderung

Dichtungsmaterial: EPDM Temperatur: 0-45 °C pH- Bereich: 6-9 Schutzart: IP 68

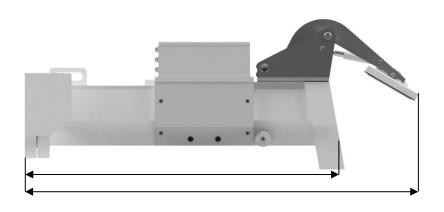
Druckluftversorgung: Kompressor mit automatischer Entwässerung

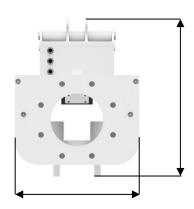
Spannungsversorgung: max. 13A 230VAC

Maximale Kabellänge

Messaufnehmer ← → Messumformer 25m

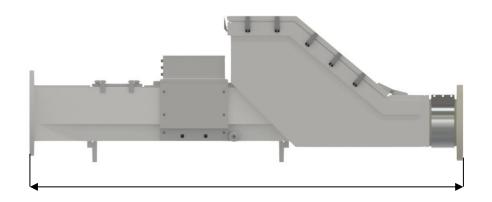
Maximale Länge Druckluftleitung 15m

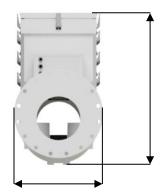

Reglereinheit abgesetzt Grosse Distanz durch erhöhten Druck möglich


Bitte nehmen Sie mit unserem Aussendienst Kontakt auf um die Machbarkeit zu prüfen, wenn Sie bei Ihrem Projekt Im Grenzbereich der angegebenen Distanzen liegen.

Theoretische Baulängen

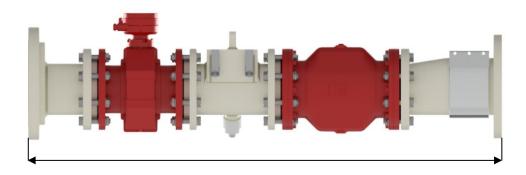
Teilgefüllte nass aufgestellte Bauweise

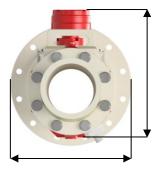



NW	Gesamtlänge bei offener Klappe	Gesamtlänge bei geschlossener Klappe	Gesamtlänge bei verkürzter Bauweise und offener Klappe	Breite	Höhe
200	1800	1460	1450	470	560
250	2180	1750	1570	530	700
300	2440	2000	1650	580	800
350	2780	2290	1800	650	860
400	3360	2580	2190	695	1000
500	4020	3160	2490	780	1200
600	4650	3720	2760	870	1450
700	5300	4300	3060	950	1795
800	6070	4970	3330	1050	2000

Bei vorgesetztem Schieber ist ein zusätzlicher Platzbedarf nötig. Weitere Grössen, verkürzte Ausführungen und Lösungen für spezielle hydraulische Gegebenheiten auf Anfrage.

Teilgefüllte trocken aufgestellte Bauweise

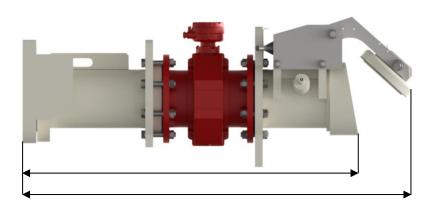


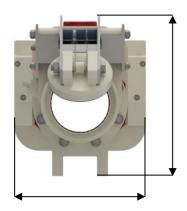


NW	Gesamtlänge	Gesamtlänge bei verkürzter Bauweise	Breite	Höhe
200	2120	1690	450	700
250	2670	1980	520	790
300	2950	2080	550	880
350	3440	2370	620	950
400	3990	2720	700	1150

Bei vorgesetztem Schieber ist ein zusätzlicher Platzbedarf nötig. Weitere Grössen, verkürzte Ausführungen und Lösungen für spezielle hydraulische Gegebenheiten auf Anfrage.

MID-gesteuerte pneumatische Abflussregelung mit Quetschventil

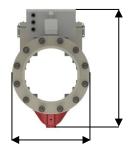




NW	Gesamtlänge	Gesamtlänge bei verkürzter Bauweise	Breite	Höhe
125	1545	810	310	420
150	1740	930	340	420
200	2125	1120	400	480
250	2495	1340	460	530
300	2880	1530	510	580

MID-gesteuerte pneumatische Abflussregelung




NW	Gesamtlänge bei offener Klappe	Gesamtlänge bei geschlossener Klappe	Gesamtlänge bei verkürzter Bauweise und offener Klappe	Breite	Höhe
80	830	640	-	295	450
100	935	735	-	295	490
150	1170	960	1120	395	520
200	1475	1255	1260	480	570
250	1815	1565	1510	520	720
300	2200	1860	1770	575	810
350	2415	2045	1870	645	860
400	2700	2300	2040	720	910
500	3325	2825	2400	850	1080

Bei vorgesetztem Schieber ist ein zusätzlicher Platzbedarf nötig. Weitere Grössen, verkürzte Ausführungen und Lösungen für spezielle hydraulische Gegebenheiten auf Anfrage.

LDM-gesteuerte pneumatische Abflussregelung mit Quetschventil

NW	Gesamtlänge	Gesamtlänge bei verkürzter Bauweise	Breite	Höhe
150	1980	1440	350	470
200	2470	1700	400	540
250	2940	1970	460	620
300	3420	2230	510	690

Bei gleichbleibendem Querschnitt und Gefälle des Zulaufrohrs kann eine verkürzte Bauweise mit Servicedeckel verwendet werden.

Steuerung

Die Steuerung der pneumatischen Abflussregelung enthält ein Touch-Display mit Zoom- und Wischfunktion, sowie einen Datenlogger und ein lokales Klein-PLS zur Nutzung mit Webbrowser, welches im lokalen Netzwerk oder auf Wunsch auch aus dem Internet erreicht werden kann. Nebst den vielseitigen Schnittstellen (nächstes Kapitel), kann das Klein-PLS, resp. der Webserver auch im kundenseitigen Prozessleitsystem integriert und angezeigt werden.

Virtuelle Darstellung des zoombaren Panels an der Vorort-Steuerung und der Nutzung des Webservers per Fernzugriff von der Leitstelle aus.

Schnittstellen

Im Standard mit Modem zur Nutzung aller Mobilfunknetze bis 4G/LTE, Fixnet-Internetanbindung und VPN-Technologie

Signalausgänge: 4–20 mA: Momentandurchfluss und eingestellter Regelwert

Digital (Aktiv/Passiv): Mengenzähler und 2x Störung

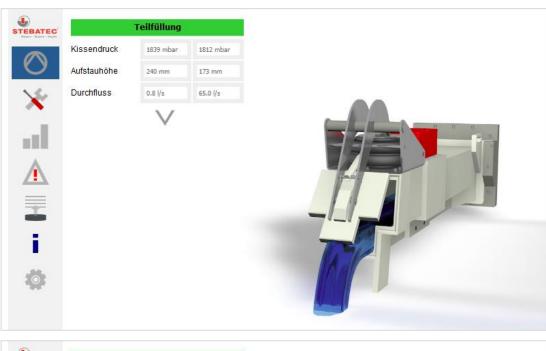
Signaleingänge: 4–20 mA: Soll- Regelwert

Digital (potenzialfrei): AUF (Fern); ZU (Fern); AUTOMATIK;

MANUELL START REINIGUNG;

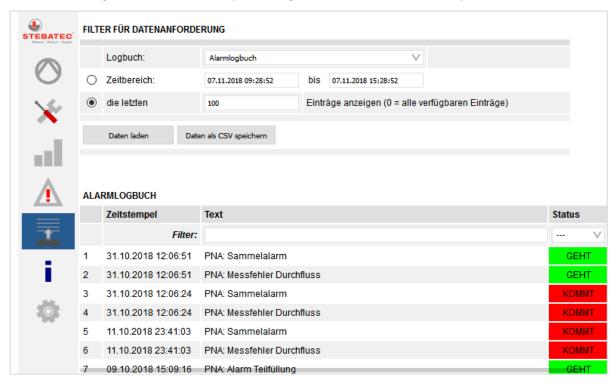
Kommunikation: RS485 (Modbus RTU/ASCII), RS232, Ethernet (Modbus TCP)

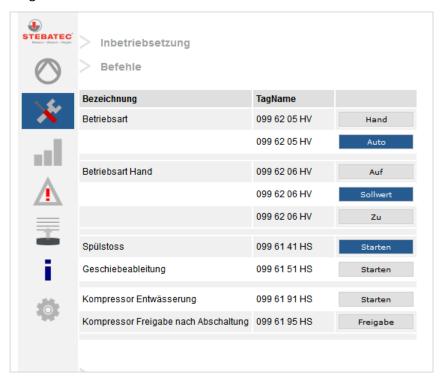
Anbindung über Internet/VPN.


VPN-Verbindung zur Fernwartung mit STEBATEC (Internetverbindung mit STEBAmobie möglich)

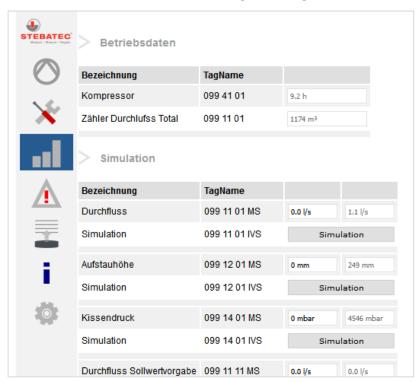
Anschlussplan auf Anfrage.

Bedienung


Das intuitiv bedienbare Panel stellt die berechnete Position der Regelklappe in Echtzeit dar. Ebenfalls werden jeweils die wichtigsten Messwerte im Ist/Soll-Vergleich angezeigt.



Im Logbuch werden registrierte Meldungen und Alarme aus der Vergangenheit angezeigt. Mittels Filter können die Ereignisse im Bedarfsfall spezifisch gesucht und auch als Liste exportiert werden.



Die Steuerung verfügt über Zähler und Aufzeichnungen, die individuell genutzt werden können. Die Möglichkeit zur Simulation einzelner Messwerte untersützt bei der Inbetriebnahme oder im Störfall.

Die Bedienung der PNA ist in jedem Fall einfach gehalten, jedoch sehr vielfältig. Details und vollständige Übersichten finden Sie in der Bedienungsanleitung.

Kontaktdaten

STEBATEC AG

Mattenstrasse 6a CH-2555 Brügg

Tel. +41 (0)32 366 95 95

info@stebatec.ch www.stebatec.ch